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ABSTRACT
Existing literature on adversarial Machine Learning (ML) focuses
either on showing attacks that break every ML model, or defenses
that withstand most attacks. Unfortunately, little consideration is
given to the actual cost of the attack or the defense. Moreover,
adversarial samples are often crafted in the “feature-space”, making
the corresponding evaluations of questionable value. Simply put,
the current situation does not allow to estimate the actual threat
posed by adversarial attacks, leading to a lack of secure ML systems.

We aim to clarify such confusion in this paper. By considering
the application of ML for Phishing Website Detection (PWD), we
formalize the “evasion-space” in which an adversarial perturbation
can be introduced to fool a ML-PWD—demonstrating that even
perturbations in the “feature-space” are useful. Then, we propose a
realistic threat model describing evasion attacks against ML-PWD
that are cheap to stage, and hence intrinsically more attractive for
real phishers. Finally, we perform the first statistically validated
assessment of state-of-the-art ML-PWD against 12 evasion attacks.
Our evaluation shows (i) the true efficacy of evasion attempts that
are more likely to occur; and (ii) the impact of perturbations crafted
in different evasion-spaces. Our realistic evasion attempts induce
a statistically significant degradation (3–10% at ? <0.05), and their
cheap cost makes them a subtle threat. Notably, however, some
ML-PWD are immune to our most realistic attacks (?=0.22). Our
contribution paves the way for a much needed re-assessment of
adversarial attacks against ML systems for cybersecurity.
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1 INTRODUCTION
After more than a decade of research [21] and thousands of pa-
pers [4], it is well-known that Machine Learning (ML) methods
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are vulnerable to adversarial attacks. Specifically, by introducing
imperceptible perturbations (down to a single pixel or byte [13, 82])
in the input data, it is possible to compromise the predictions made
by a ML model. Such vulnerability, however, is more dangerous
in settings that implicitly assume the presence of adversaries. A
cat will not try to fool a ML model. An attacker, in contrast, will
actively try to evade a ML detector—the focus of this paper.

On the surface, the situation portrayed in research is vexing. The
confirmed successes of ML [48] are leading to large-scale deploy-
ment of ML in production settings (e.g., [31, 76, 84]). At the same
time, however, dozens of papers showcase adversarial attacks that
can crack ‘any’ ML-based detector (e.g., [14, 57]). Although some
papers propose countermeasures (e.g., [72]), they are quickly de-
feated (e.g., [28]), and typically decrease the baseline performance
(e.g. [14, 32]). As a result, recent reports [35, 53] focusing on the
integration of ML in practice reveal that: “I Never Thought About
Securing My Machine Learning Systems” [23]. This is not surpris-
ing: if ML can be so easily broken, then why invest resources in
increasing its security through –unreliable– defenses?

Sovereign entities (e.g., [2, 3]) are endorsing the development of
“trustworthy” ML systems; yet, any enhancement should be eco-
nomically justified. No system is foolproof (ML-based or not [26]),
and guaranteeing protection against omnipotent attackers is an
enticing but unattainable objective. In our case, a security system
should increase the cost incurred by an attacker to achieve their
goal [61]. Real attackers have a cost/benefit mindset [93]: they may
try to evade a detector, but only if doing so yields positive returns.
In reality, worst-case scenarios are an exception—not the norm.

Our paper is inspired by several recent works that pointed out
some ‘inconsistencies’ in the adversarial attacks carried out by
prior studies. Pierazzi et al. [73] observe that real attackers operate
in the “problem-space”, i.e., the perturbations they can introduce
are subject to physical constraints. If such constraints are not met,
and hence the perturbation is introduced in the “feature-space”
(e.g., [63]), then there is a risk of generating an adversarial example
that is not physically realizable [86]. Apruzzese et al. [12], how-
ever, highlight that even ‘impossible’ perturbations can be applied,
but only if the attacker has internal access to the data-processing
pipeline of the target system. Nonetheless, Biggio and Roli sug-
gest that ML security should focus on “anticipating the most likely
threats” [21]. Only after proactively assessing the impact of such
threats a suitable countermeasure can be developed—if required.

We aim to promote the development (and deployment) of secure
ML systems. However, meeting Biggio and Roli’s recommendation
presents two tough challenges for research papers. First, it is neces-
sary to devise a realistic threat model which portrays adversarial
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attacks that are not only physically realizable, but also econom-
ically viable. Devising such a threat model, however, requires a
detailed security analysis of the specific cyberthreat addressed by
the detector—while factoring the resources that attackers are will-
ing to invest. Second, it is necessary to evaluate the impact of the
attack by crafting the corresponding perturbations. Doing so is
difficult if the threat model assumes an attacker operating in the
problem-space, because such perturbations must be applied on raw-
data, i.e., before any preprocessing occurs—which is hard to find.

In this paper, we tackle both of these challenges. In particular,
we focus on ML-systems for Phishing Website Detection (PWD).
Countering phishing – still a major threat today [7, 49] – is an
endless struggle. Blocklists can be easily evaded [85], and to cope
against adaptive attackers some detectors are equipped with ML
(e.g. [84]). Yet, as shown by Liang et al. [57], even suchML-PWD can
be “cracked” by oblivious attackers—if they invest enough effort to
reverse engineer the entire ML-PWD. Indeed, we address ML-PWD
because prior work (e.g., [20, 36, 55, 79]) assumed threat models that
hardly resemble a real scenario. Phishing, by nature, is meant to be
cheap [50] and most attempts end up in failure [66]. It is unlikely1
that a phisher invests many resources just to evade ML-PWD: even
if a website is not detected, the user may be ‘hooked’, but is not
‘phished’ yet. As a result, the state-of-the-art on adversarial ML for
PWD is immature—from a pragmatic perspective.

Contribution and Organization. Let us explain how we aim
to spearhead the security enhancements to ML-PWD. We begin by
introducing the fundamentals concepts (PWD, ML, and adversarial
ML) at the base of our paper in §2, which also serves as a motivation.
Then, we make the following four contributions.

• We formalize the evasion-space of adversarial attacks against
ML-PWD (§3), rooted in exhaustive analyses of a generic
ML-PWD. Such evasion-space explains ‘where’ a perturba-
tion can be introduced to fool a ML-PWD. Our formalization
highlights that even adversarial samples created by direct
feature manipulation can be realistic, validating all the at-
tacks performed by past work.

• By using our formalization as a stepping stone, we pro-
pose a realistic threat model for evasion attacks against ML-
PWD (§4). Our threat model is grounded on detailed security
considerations from the viewpoint of a typical phisher, who
is confined in the ‘website-space’. Nevertheless, our model
can be relaxed by assuming attackers with greater capabili-
ties (which require a higher cost).

• We combine and practically demonstrate the two previous
contributions (§5). We perform an extensive, reproducible,
and statistically validated evaluation of adversarial attacks
against state-of-the-art ML-PWD. By using diverse datasets,
ML algorithms and features, we develop 18 ML-PWD, each
of which is assessed against 12 different evasion attacks built
upon our threat model.

• By analyzing the results of our evaluation (§6): (i) we show
the impact of attacks that are very likely to occur against both
baseline and adversarially robust ML-PWD; and (ii) we are
the first to fairly compare the effectiveness of evasion attacks
in the problem-space with those in the feature-space.

1It is unlikely, but not impossible. Hence, as recommended by Arp et al [17], it is positive
that such cases have also been studied by prior work.

Our results highlight that more realistic attacks are not as
disruptive as claimed by past works (§7), but their low-cost
makes them a threat that induces statistically significant
degradations. Finally, our evaluation serves as a ‘benchmark’ for
future studies: we provide the complete results and source-code in
a dedicated website: https://spacephish.github.io.

2 BACKGROUND AND MOTIVATION
Our paper lies at the intersection of Phishing Website Detection
(PWD) and Machine Learning (ML) security. To set-up the stage
for our contribution and motivate its necessity, we first summarize
PWD (§2.1), and then explain the role of ML in PWD (§2.2). Finally,
we provide an overview of the adversarial ML domain (§2.3).

2.1 Phishing Website Detection
Although having been studied for nearly two decades [51], phishing
attacks are still a rampant menace [49]: according to the FBI [1], the
number of reported phishing attempts has increased by 900% from
2018 to 2020 (26k up to 240k). Aside from the well-known risks to
single users (e.g., fraud, credential theft [37]), phishing is still one of
the most common vectors to penetrate an organization’s perimeter.
Intuitively, the best countermeasure to phishing is its prevention
through proper education [94]. Despite recent positive trends, how-
ever, such education is far from comprehensive: the latest “State of
the Phish” report [7] states that more than 33% of companies do
not have any training program for their employees, and more than
50% only evaluate such education through simulations. As a result,
there is still a need of IT solutions that mitigate the phishing threat
by its early detection. In our case, this entails identifying a phishing
website before a user lands on its webpage, therefore defusing the
risk of falling victim to a phishing attack. We provide in Fig. 1 an
exemplary architecture of a Phishing Website Detector (PWD).

Phishing Website Detector

Benign

Phishing

AnalysisPreprocessing

Website

output

Fig. 1: Exemplary PWD. After preliminary preprocessing, a website
is analyzed by a detector to determine its legitimacy.

Despite extensive efforts, PWD remains an open issue. This is
due to the intrinsic limitations of the most common detection ap-
proaches reliant on blocklisting (e.g., [65, 74]). Such techniques have
been improved and nowadays they even involve automatic updates
with recent feeds (e.g., PhishTank [6]). However, blocklists are a
double-edged sword: on the good side, they are very precise and
are hence favored due to the low rate of false alarms; on the bad
side, they are only effective against known phishing websites [9].
The latter is a problem: expert attackers are aware of blocklists
and hence move their phishing ‘hooks’ from site to site, bypass-
ing most PWD. As shown by Tian et al. [85], such strategies can
elude over 90% of popular blocklists for more than one month. To
counter such adaptive attackers, much attention has been given
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to data-driven detection schemes—including those within the Ma-
chine Learning (ML) paradigm [84]. Indeed, ML allows to greatly
enhance the detection capabilities of PWD. Let us explain why.

2.2 Machine Learning for PWD
The cornerstone of ML is having “machines that automatically learn
from experience” [48], and such experience comes in the form of
data. By applying a given ML algorithm A, e.g. Random Forest (RF),
to analyze a given dataset D, it is possible to train a ML model
M that is able to ‘predict’ previously unseen data. We provide a
schematic of such workflow in Fig. 2. In the case of PWD, a ML
model M can be deployed in a detector (e.g., in the hexagon in
Fig. 1) to infer whether a given webpage is benign or phishing.

Dataset
D

A

train
ML model

M
Algorithm

future 
data 

predict

Fig. 2: Machine Learning workflow. By training A on D, a ML model
M is developed. Such M can be used to predict future data.

The main advantage of ML models is their intrinsic ability of
noticing weak patterns in the data that are overlooked by a human,
and then leveraging such patterns to devise ‘flexible’ detectors that
can counter even adaptive attackers. As a matter of fact, Tian et
al. [85] show that a ML model based on RF is effective even against
“squatting” phishing websites—while retaining a low-rate of false
alarms (only 3%). Moreover, acquiring suitable data (i.e., recent and
labelled) for ML-PWD is not difficult—compared to other cyber-
detection problems for which ML has been proposed [16].

Such advantages have been successfully leveraged by many re-
search efforts (e.g., [64, 83]). Existing ML-empowered PWD can
leverage different types of information (i.e., features) to perform
their detection. Such information can pertain either to a website’s
URL [91] or to its representation, e.g., by analyzing the actual image
of a webpage as rendered by the browser [41], or by inspecting
the HTML [46]. For example, Mohammad et al. [60] observed that
phishing websites usually have long URLs; and often contain many
‘external’ links (pointing to, e.g., the legitimate ‘branded’ website, or
the server for storing the phished data), which can be inferred from
the underlying HTML. Although some works use only URL-related
features (e.g., [24]) – which can also be integrated in phishing email
filters (e.g., [38]) – more recent proposals use combinations of fea-
tures (e.g., [30, 89]); potentially, such features can be derived by
querying third-party services (e.g., DNS servers [45]).

The cost-effectiveness ofML-PWD increased their adoption: even
commercial browsers (e.g., Google Chrome [57]) integrate ML mod-
els in their phishing filters (which can be further enhanced via cus-
tomized add-ons [84]); moreover, ML-PWD can also be deployed
in corporate SIEM [43]. However, it is well-known that no security
solution is foolproof: in our case, ML models can be thwarted by
exploiting the so-called adversarial attacks [14].

2.3 Adversarial Attacks against ML
The increasing diffusion of ML led to question its security in adver-
sarial environments, giving birth to “adversarial machine learning”
research [21, 29]. Attacks against ML exploit adversarial samples,
which leverage perturbations to the input data of a ML model that
induce predictions favorable to the attacker. Even imperceptible
perturbations can mislead proficient ML models: for instance, Su et
al. [82] modify a single pixel of an image to fool an object detector;
whereas Apruzzese et al. [13] evade botnet detectors by extending
the network communications with few junk bytes.

An adversarial attack is typically described with a threat model,
which explains the relationship of a given attacker with the de-
fender’s system. In particular, the attacker has a goal and, by lever-
aging their knowledge and capabilities, they will adopt a specific
strategy [21]. Common terms associated with the attacker’s knowl-
edge are white-box and black-box : in the former, the attacker knows
everything about the defender; whereas in the latter the attacker
knows nothing [70, 97]. The capabilities describe how the attacker
can interact with the target system, e.g., they: can influence only
the inference or also the training stage of the ML model; can use the
ML model as an “oracle” by inspecting the output to a given input;
and can be subject to constraints on the creation of the adversarial
perturbation (e.g., a limited amount of queries).

Despite thousands of papers focusing on this topic, a universal
and pragmatic solution has not been found yet. Promising defenses
are invalidated within the timespan of a few months (e.g. distil-
lation was proposed in [72] and broken in [28]). Even “certified”
defenses [47] can only work by assuming that the perturbation
is bounded within some magnitude—which is not a constraint to
which real attackers must abide (as pointed out by Carlini et al. [27]).
From a pragmatic perspective, any defense has a cost : first, because
it must be developed; second, because it can induce additional over-
head. The latter is particularly relevant in cybersecurity, because
it may decrease the performance of the ML model when no adver-
sarial attack occurs. For instance, a well-known defense is feature
removal [80], which entails developing ML models that do not ana-
lyze the features expected to be targeted by a perturbation. Doing
this, however, leads to less information provided to the ML model,
hence inducing performance degradation (e.g., [14]). Even when
countermeasures have a small impact (e.g., [32]), this is not negligi-
ble in cyber-detection: attacks are a “needle in a haystack” [85], and
even a 1% increase in false positives is detrimental [90]. Therefore,
ML engineers will not devise any protection mechanism unless the
corresponding threat is shown to be dangerous in reality [53].

The Problem. Unfortunately, research papers intrinsically im-
pair the development of secure ML systems, because the aim is often
to “outperform the state-of-the-art”. In adversarial ML, this leads
to papers that either showcase devastating attacks stemming from
extremely powerful adversaries (i.e., white-box [82]); or viceversa,
i.e., show that even oblivious attackers can thwart ML systems [70].
However, real ‘adaptive’ attackers (i.e., those that ML methods
should be protected against) do not conform to these two extremes.
Indeed, having complete knowledge of the target system requires a
huge resource investment (especially if such system is devoted to
cybersecurity), which may be better spent elsewhere; conversely, it
is unlikely that opponents will launch attacks while knowing noth-
ing of the defender. Hence, to provide valuable research, efforts on
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adversarial ML should start focusing on the gray area within these
two extremes—which implicitly are more likely to occur [12]. In
the context of ML-PWD, our paper is a first step in this direction: as
we will show, evasion attempts evaluated in literature (§7), despite
being devastating, are costly to launch—even in black-box settings.

3 THE EVASION-SPACE OF ADVERSARIAL
ATTACKS AGAINST ML-PWD

We aim to spearhead valuable research in adversarial attacks against
ML-PWD. To this purpose, we first elucidate the internal functional-
ities of a ML-PWD (§3.1). Then, we propose our original formaliza-
tion of the evasion-space of adversarial perturbations (§3.2). Finally,
we explain why our contribution validates all prior work (§3.3).

3.1 Analysis of a ML-PWD
Let us connect the previously introduced concepts (cf. §2.1 and §2.2)
and provide an overview of a generic ML-PWD in Fig. 3.

Feature 
Extraction

Benign

Phishing

ML model
M

Output space

M (Fx)x Fx

Machine Learning-based Phishing Website DetectorWebsite

yx

DAFeature set 
F

Machine Learning spacePreprocessing spaceWebsite space

Fig. 3: Architecture of a ML-PWD. A website, G , is preprocessed into
�G . AMLmodel M analyzes such feature representation and predicts
its ground truth as M(�G ) = ~G .

A sample (i.e., a website), G , ‘enters’ the ML-PWD and is subject
to some preprocessing aimed at transforming any input into a
format accepted by the ML model—according to a given feature
set, � . (We assume that G is not blocklisted.) The result of such
preprocessing is the feature representation of the website G , i.e. �G ,
which can now be analyzed by the ML model M. We consider a ML
model focused on binary classification. Hence, training M requires:
a dataset, D, whose samples are labelled as benign or phishing; and
any ML algorithm, A, supporting classification tasks (e.g., RF).

The ML model M predicts the ground truth of �G as ~G , i.e.,
M(�G ) = ~G . Hence, we can summarize the workflow of our ML-
PWD through the following Expression:

G → �G → M(�G ) = ~G . (1)

If G is a phishing (benign) webpage and ~G is also phishing (be-
nign), then we have a true positive (true negative); otherwise, we
have an incorrect classification (either a false positive or a false
negative). We assume that M has been properly trained, so that its
deployment performance yields a high true positive rate (C?A ) while
maintaining a low false positive rate (5 ?A )—under the assumption
that no adversarial attack occurs.

3.2 Evasion Attacks against ML-PWD
Adversarial attacks exploit a perturbation, Y, that induces a ML
model M to provide an output favoring the attacker (cf. §2.3). In
our case, M is a (binary) classifier that analyzes �G , hence we can
express an adversarial attack through the following Expression:

find Y s.t. M(�G ) = ~YG ≠ ~G . (2)

In other words, the objective is finding a perturbation Y that induces
a ML model M (that is assumed to work well) to misclassify a given
sample G (i.e.,~YG ≠ ~G ). Because our focus is on evasion attacks, such
misclassification entails having a positive (i.e., phishing) classified
as a negative (i.e., benign). It is implicitly assumed that such Y
must: (i) preserve the ground truth2 (i.e., ~YG should be the same as
~G ); and (ii) preserve the phishing logic of a webpage [69]. Such Y,
however, can lead to different effects on ~YG depending on ‘where’
it is applied during the workflow described by Exp. 1. We describe
such occurrence by formalizing the evasion-space of an attacker.

Evasion-Space. Let us observe Fig. 3. We can see that the figure
is divided into four ‘spaces’, each allowing the introduction of a
perturbation Y that can affect the output of the ML-PWD. Of course,
a perturbation in the last space, i.e., the output-space, cannot be
considered as an ‘adversarial ML attack’, because it will have no
relationship with the ML model M. Hence, the evasion-space of an
attacker that wants to induce a misclassification by M is confined
to the first three spaces. Let us analyze each of these.

(1) Website-space Perturbations (WsP).The entire detection work-
flow begins in the ‘website-space’, in which the website (i.e.,
G ) is generated. Such space is accessible by any attacker, be-
cause they are in control of the generation process of their
(phishing) website. As an example, the attacker can freely
modify the URL or the representation of a website (subject
to physical constraints3). Introducing a perturbation Y in this
space (i.e., a WsP) yields an adversarial sample G =G+Y, and
the effects of such Y can affect all the operations performed
by the ML-PWD (cf. Exp 1). We emphasize the word “can”:
this is because what happens after G enters the ML-PWD
strictly depends on the implementation of such ML-PWD—
which may, or may not, ‘notice’ the corresponding Y (e.g., M
can analyze an � that is not influenced by Y).

(2) Preprocessing-space Perturbations (PsP). After G is acquired by
the ML-PWD, it is first transformed into �G . An attacker with
write access to the ‘preprocessing-space’ can introduce a PsP
Y that affects the process that yields the feature representation
of a website, leading to �G = �G +Y. For instance, a website
G with an URL of 40 characters can be turned into a �G
that has the URL_length feature=20. Intuitively, attackers
able to introduce PsP are powerful, but are still subject to
constraints: before any �G is sent to theMLmodel M, such �G
is checked to ensure that it is not corrupted [12]. Indeed, �G
must not violate any inter-feature dependencies or physical
constraints. With respect to WsP, PsP are guaranteed to be
‘noticed’ by the ML-PWD; however, they do not necessarily
influence the predictions of M: making a URL shorter may
not be enough to fool the detection process.

(3) ML-space Perturbations (MsP). After the preprocessing, the
feature representation of a website �G enters the Machine
Learning-space in order to be analyzed by M. If an attacker
has write access to this space, they can introduce an MsP,
i.e., a perturbation Y that affects �G immediately before it
reaches M. An MsP is the ‘strongest’ type of perturbation
because it affects the �G after all integrity checks4 have been

2E.g., changing a URL from “go0gle.com” to “google.com” is not a valid Y .
3Which depend on the semantics of websites, e.g., URLs cannot be 1 character long.
4Indeed, a ML model M is agnostic to the generation process of a given input.
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performed—potentially leading to corrupted values, or which
have no relationship to any real G . We hence denote MsP
as �G = �G + Y. As an example, a MsP can yield a �G having
an URL_length=0. As such, MsP are very likely to induce
uncanny responses by M (but do not guarantee evasion).

Summary and Cost. From Exp. 2, we observe that any per-
turbation Y should ultimately affect the feature representation �G
of a given sample G . Hence, the crux is determining ‘where’ such
perturbation is introduced—which can happen in three spaces. We
formally define adversarial attacks by means of introducing a per-
turbation in each of these spaces (i.e., WsP, PsP and MsP) through
the following Expression (which extends Exp. 1):

find Y s.t.


G = G + Y ⇒ G → G → �G → M(�G ) = ~YG ≠ ~G WsP

�G = �G + Y ⇒ G → �G → M(�G ) = ~YG ≠ ~G PsP

�G = �G + Y ⇒ G → �G → �G → M(�G ) = ~YG ≠ ~G MsP

(3)

We remark that the effects of WsP can match those of PsP—which
can also match those of MsP. For instance, a MsP can yield a sample
with an URL_length of 20 which – as long as it does not violate any
inter-feature dependency – can represent a valid website (hence
MsP=PsP)5; to obtain an equivalentWsP, the attacker would have to
modify the actual URL and make it of exactly 20 characters (which
is doable). Hence, in some cases, �G=�G=�G . As such, although
some MsP cannot be crafted in the website-space, it is also unfair to
consider all MsP (or PsP) as being not physically realizable. Finally,
from a cost viewpoint, WsP�PsP<MsP, because realizing MsP
requires the attacker to have more control6 on the ML-PWD (i.e.,
they must obtain write-access to deeper segments of the ML-PWD).

3.3 Validation of Previous Work
An important contribution of our evasion-space is that it validates
all past research that consider perturbations in the “feature-space”
(i.e., PsP or MsP). Let us explain why.

Context. By using Pierazzi et al. [73] notation, our WsP can be
seen as perturbations in the “problem-space”; whereas PsP and MsP
are perturbations in the “feature-space”. The main thesis of Pierazzi
et al. [73] is that evaluations carried out in the feature space are
unreliable due to the “inverse mapping problem”: some changes in
the feature representation of a sample (i.e., �G ) may not be physically
realizable when manipulating the original sample (i.e., G )—therefore
exposing the “weakness of previous evasion approaches.”

Intuition. Our original formalization elucidates that the “weak-
nesses” of past work are not, in fact, weaknesses—therefore over-
turning some of the claims of Pierazzi et al. [73]. Our thesis is
rooted in the following observation: the “inverse mapping problem”
is irrelevant if the attacker has write access to the ML-PWD.

Explanation. Any attacker is able to craft WsP by manipulat-
ing their own phishing webpages (to some degree). In contrast,
reliably realizing PsP and MsP can only be done by assuming an
attacker that can manipulate the corresponding space (i.e., either
the preprocessing- or the ML-space). Achieving this in practice
5Of course MsP=PsP if there is no ‘integrity check’.
6Our formalization is orthogonal to the one by Šrndic and Laskov. [98]: while [98] focus
on the attacker’s knowledge (“what does the attacker know about the ML system?”),
we focus on the capabilities (i.e., “where can the attacker introduce a perturbation
affecting the ML system?”). Moreover, our PsP are semantically different than the
“adversarial preprocessing” by Quiring et al. [75]: while [75] affect the preprocessing
phase from outside the ML system, our PsP affect such phase from the inside.

presents a high barrier of entry—but it is not impossible. For in-
stance, consider the case of an attacker who has compromised
a given device integrating a client-side ML-PWD: such attacker
can interfere with any of the ML-PWD operations—especially if
it is open-source (e.g., [44]). Of course, realizing PsP or MsP if the
ML-PWD is deployed in an organization-wide intrusion detection
system is harder, but not unfeasible (as pointed out by [12]).

Takeaway: Our formalization validates all evasion attacks against
ML-PWD previously evaluated through perturbations in any inter-
nal ‘space’ of the ML-PWD. This requires to change the attacker’s
assumptions, implicitly increasing the cost of the attack.

Consequences. Simply put, we restore the value (partially ‘lost’
after the publication of [73]) of the evaluations performed by prior
work (§7). By assuming that the considered attacker can access a
given space of the ML-PWD (either for PsP or MsP), then there is
no risk of falling into the “inverse mapping problem”—because it
is a constraint that such attacker is not subject to. Such different
assumptions, however, implicitly raise the cost of the corresponding
attack. For example. Corona et al. [30] craft perturbations in the
ML-space: according to [73], the resulting perturbations are, hence,
unreliable. However, by assuming that the attacker can manipulate
the ML-space, then such adversarial examples (deemed unreliable
by [73]) would become realistic (thanks to our contribution).

4 PROPOSED REALISTIC THREAT MODEL
We use our evasion-space formalization to devise our proposed
adversarial ML threat model—describing attractive strategies for
real phishers. We first provide its definition (§4.1), and then support
its realisticness via security analyses (§4.2). In Appendix B we show
how to apply WsP on real phishing webpages. .

4.1 Formal Definition
We define our threat model according to the following four criteria
(well-known in adversarial ML [21]).

Goal. The adversary wants to evade a ML-PWD that uses M as
a detection method (i.e., the attacker wants to satisfy Exp. 2).

Knowledge. The adversary has limited knowledge of the target
system, the ML-PWD. They know nothing about: the ML model
M, its training data D, and its underlying ML algorithm A (ex-
cept that it supports binary classification). However, the adversary
knows a subset of the feature set � analyzed by M. Let  ⊆ � be
such a subset. The adversary is also aware that the ML-PWD will
likely detect phishing websites if no evasion attempt is made (oth-
erwise, there would be no reason to do so). Finally, the adversary
implicitly knows that no blocklist includes their phishing webpages
(otherwise, the attacker would be forced to manipulate the URL).

Capability. The adversary has no access to the ML-PWD. They
cannot use the ML-PWD as an “oracle” (i.e., inspect the output to a
given input); and they are therefore confined to perturbations in
the website-space (i.e., WsP).

Strategy. The adversary uses their knowledge of  to craft WsP
that may result in successful evasion attacks at inference time.

We observe that our threat model is general because no specific
set of features (� ) or ML model M (and hence D and A) is provided.
Therefore, our threat model can cover any ML-PWD that resembles
the one in Fig. 3. Potentially, it can even be aML-PWDused by email
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filters if the corresponding M analyzes URL-related information
(e.g., [34, 38]). Furthermore, our threat model can be extended. We
will do so in our evaluation (§5), in which we compare the effects of
attacks usingWsP against those entailing PsP andMsP (by assuming
the same knowledge, i.e., limited to  ).

4.2 Security Analysis
Let us analyze our threat model and explain why it portrays a
realistic attacker—especially if compared to typical ‘white-/black-
box’ adversarial scenarios (cf. §2.3). We intend to justify that our
threat model describes attacks that are interesting to investigate,
and hence valuable for the security of ML-PWD.

Phishing in a nutshell. We start by focusing the attention
on the intrinsic nature of phishing. Indeed, phishing attempts –
and especially those involving phishing websites – are ‘cheap’ in
nature [50]. Considering that real attackers operate with a cost-
benefit mindset, it is unlikely that such attackers will invest exten-
sive resources just to have their webpages evade a ML-PWD. Firstly,
because such evasion will be temporary (as soon as the webpage
is reported in a blocklist, any adversarial attack will be useless);
secondly, because, even if a website evades a ML-PWD, the phish-
ing attempt is not guaranteed to succeed (a user still has to input
its sensitive data). Indeed, despite the exponential proliferation of
phishing [7], most phishing attempts are prone to failure [66]—and
the attackers are well aware of this fact. Of course, attackers can
opt for more expensive spear-phishing campaigns [25] (which still
have a success rate of barely 10% [42]), but in this case they will
likely design entirely new phishing webpages—and not rely on
cheap perturbations on pre-existing samples.

Limited Knowledge. Our attacker knows something (i.e.,  )
about the ML-PWD, but they are not omniscient—hence, our threat
model can be considered as a gray-box scenario. Such ‘box’, how-
ever, is the entire ML-PWD, i.e., the blue rectangle in Fig. 3. Our
scenario is more interesting to investigate than white-box scenarios.
The reason is simple: ours ismore likely to occur, because ‘phishers’
with complete knowledge of the entire ML-PWD are extremely
unlikely. Furthermore, extensive adversarial ML literature [21] has
ably demonstrated that white-box attacks can break most systems—
including ML-PWD (e.g., [8, 36, 59, 81]).

Realistic Capabilities. Our ‘standard’ attacker has no access
to the ML-PWD, which is a realistic assumption. For instance, the
attacker can share a phishing website via social media, but with-
out knowing which device (and, hence, ML-PWD) is being used
by potential victims to open such website. Therefore, the attacker
cannot reliably use M as an oracle. They could opt for querying a
surrogate ML-PWD to reverse-engineer its functionalities and then
leverage the transferability of adversarial attacks [33]. However,
such ‘black-box’ scenario is both (i) unlikely to occur; and (ii) ul-
timately not interesting to consider for a research paper. Unlikely,
because it would defeat the purpose of phishing attacks: reverse-
engineering operations require a huge resource investment—which
can be invalidated via a simple re-training of M (a common cyberse-
curity practice [15]). Not interesting, because such attacks have been
investigated before [10, 77]. For instance, Liang et al. [57] clearly
demonstrated that attackers with access to client-side detectors can
successfully crack and evade the corresponding ML-PWD; doing
this, however, required more than 24 hours of constant queries [57].

Takeaway: Phishing attempts have an intrinsic low rate of success.
Attackers that aim to evade a ML-PWD will favor ‘cheap’ tactics—
which can be represented by our proposed threat model.

Consideration. Attacking ML-PWD through (potentially un-
reliable) WsP is not the only way to ‘realistically’ evade ML-PWD.
This is clearly evidenced by prior work—whose validity is restored
thanks to our evasion-space formalization. However, our proposed
‘cheap’ attacks (through WsP) have never been investigated before
in adversarial ML literature on PWD (§7). We hence set out to
proactively assess the impact of feasible WsP on state-of-the-art
ML-PWD; and comparing such impact to ‘less realistic’ (hence, less
likely to occur) attacks performed through PsP and MsP. Therefore,
our evaluation will also consider such worst-case scenarios. We
stress, however, that our threat model shall not envision attackers
who: (i) can observe or manipulate D (for poisoning attacks); (ii)
can observe the output-space (for black-box attacks); (iii) have full
knowledge of the ML-PWD (for white-box attacks).

5 EVALUATION
As a constructive step forward, we assess the robustness of 18 ML-
PWD against 12 evasion attacks—all based on our threat model, but
performed in different evasion spaces. We have three goals:

• assess state-of-the-art ML-PWD against feasible attacks;
• compare perturbations introduced in distinct evasion-spaces;
• provide a statistically validated benchmark for future studies.

Achieving all such goals is challenging in research. Indeed, craft-
ing perturbations in the three distinct spaces (i.e., WsP, PsP, MsP)
requires: (i) datasets containing raw-data (for WsP), which are diffi-
cult to find; (ii) devising custom feature extractors (for developing
the ML-PWD); as well as (iii) foreseeing the effects of WsP on
such extractor (for PsP). Furthermore, to derive statistically sound
conclusions, we must repeat our experiments multiple times [16].

We describe our experimental setup (§5.1), and then summarize
our evaluation workflow (§5.2). More details are in Appendix D.

5.1 Experimental Setup
We consider a total of 18 ML-PWD, which vary depending on the
source dataset (2), the ML algorithm (3), and the feature set (3) used
to develop the corresponding ML model. Such a wide array allows
one to draw more generalizable conclusions.

5.1.1 Source Datasets. We rely on two datasets for ML-PWD:
Xphish and Zenodo [30, 89]. Our choice is based on three reasons.

• Both datasets include raw information of each sample (specif-
ically, its URL and its HTML). This is necessary because most
of our attacks leverage WsP, for which we must modify the
raw webpage, i.e., before its features are extracted.

• Both datasets have been used by the state-of-the-art. Prior
research [30, 89] has demonstrated the utility of both datasets
for ML-PWD, allowing for fair and significant comparisons.

• They enable experimental reproducibility. Indeed, collecting
ad-hoc data through public feeds (e.g., AlexaTop/PhishTank)
prevents fair future comparisons: phishing webpages are
taken down quickly, and it is not possible to retrieve the full
information of webpages ‘blocklisted’ years before.

We provide an overview of our datasets in Table 2, which shows
the number of samples (benign and phish) and the performance
(C?A and 5 ?A ) achieved by their creators (in the absence of evasion).
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5.1.2 ML Algorithms. We consider ML-PWD based on shallow
and deep learning algorithms [14] for binary classification. Our
selection aims to provide ameaningful assessment of exemplaryML-
PWD based on exemplary ML methods. In particular, we consider:

• Logistic Regression (!'). One of the simplest ML algorithms,
we consider !' because it was (assumed to be) used by the
ML-PWD embedded in Google Chrome [57].

• Random Forests ('� ). An ensemble technique, '� often out-
performs other contenders in phishing detection tasks [85].

• Convolutional neural Network (�# ). We consider this well-
known deep learning technique [54] due to its demonstrated
proficiency also in ML-PWD (e.g., [92]).

5.1.3 Feature Sets. We consider ML-PWD that use three feature
sets (� ), all resembling the one described in our use-case (Appen-
dix B). Specifically, our ML-PWD analyze one of the following:

• URL-only (�D ), i.e., the first 35 features in Table 1.
• Representation-only (�A ), i.e., the last 22 features in Table 1.
• Combined (�2 ), corresponding to all features in Table 1.

Rationale. Analyzing more information (i.e., larger feature sets,
such as �2 ) leads to superior detection performance—as shown,
e.g., in [30]. However, in some cases this may not be possible: for
instance, phishing email filters may make their decisions only by
analyzing the URL (cf. §2.2). Nevertheless, modifying the URL is one
of the easiest ways to trick a ML-PWD [67]: hence, a defender may
develop an ‘adversarially robust’ detector that analyzes only the
representation of a webpage. Such detector will have a lower per-
formance (w.r.t. �2 ) in non-adversarial scenarios, but will counter
evasion attacks that manipulate the URL (cf. §2.3).

Observation. Our feature sets are not only popular in research
(e.g., [40, 45, 60, 78]), but also used in practice. Indeed, several lead-
ing security companies yearly organize MLSEC, an ML evasion
competition [5]. In 2021 and 2022, MLSEC also involved evading
ML-PWD which specifically analyzed the HTML representation of a
webpage—i.e., our �A . We will also refer to MLSEC in our evaluation.

5.1.4 Considered Attacks. In our evaluation, we assess the ro-
bustness of each of the 18 ML-PWD against a total of 12 evasion
attacks, which vary depending on the attacker’s knowledge (i.e.,  ),
capabilities (i.e., the evasion-space) and strategy (i.e., the features
‘targeted’). In particular, we consider two macro-families of attacks:

• Cheap (Website) Attacks (WA), corresponding exactly to
our threat model and exhaustively described in our case-
study (in Appendix B).The adversary has no access to theML-
PWD, and can only apply WsP (which may not be effective).

• Advanced Attacks, where we relax some of the assump-
tions of our threat model to describe a more powerful at-
tacker7. We consider three families: ŴA, wherein the at-
tacker uses WsP, but knows a portion of the low-level imple-
mentation of the feature extractor; PA, wherein the attacker
has write-access to (parts of) the preprocessing-space, and
applies PsP; and MA, wherein the attacker has write-access
to the ML-space and will apply MsP (a worst-case scenario).

Each of these four attack families (i.e., WA, ŴA, PA, MA) comes in
three variants—depending on the features known (and targeted) by
the attacker (i.e., D, A , 2). For instance, WAA is a WA in which the
7These attacks are solely for research: their implicit higher cost w.r.t. WA may discour-
age real phishers from launching them (although they are not completely impossible).

attacker tries to affect (through WsP) features related to the HTML
representation of the webpage. Despite all our perturbations being
ultimately ‘blind’ (the attacker will never be able to observe their ef-
fect), we can expect that MA will have a greater impact than WA on
the ML-PWD. However such impact is compensated by the higher
entry barrier for MA (see §3.2). More details, including a high-level
estimate of the affordability of our attacks, are in Appendix D.

5.2 Workflow and Statistical Validation
Each source dataset (Zenodo and Xphish) represents a different setting—
which we use to extract the corresponding training and inference
partitions for ourML-PWD. SuchML-PWD are based on one among
three ML algorithms, encompassing either shallow (!' and '� ) or
deep learning (�# ) classifiers. Each of these classifiers presents
three variants, depending on the analyzed features (�D , �A , or �2 ),
yielding a total of 9 ‘baseline’ ML-PWD per source dataset. After en-
suring that such 9 ML-PWD maximize their performance (high C?A

and low 5 ?A , at least for �2 ), we assess their robustness against all
the 12 proposed evasion attacks. Such attacks come in four families
(WA, ŴA, PA, MA) depending on the knowledge and capabilities of
the opponent, and each family presents three variants denoting the
specific strategy, i.e., which features are ‘targeted’ by the attacker
(either D, A , or 2). We consider ML-PWD using �2 to be the ‘true’
baselines (likely highest performance in the absence of evasion
attempts); whereas those using either �D or �A can be considered
as ‘robust’ baselines (i.e., those using �D will protect against attacks
targeting �A , and viceversa).8 Such workflow is depicted in Fig. 6.

To provide results that are devoid of experimental bias and also
to serve as a reliable benchmark for future researches, we repeat
all the abovementioned operations 50 times. This means that each
source dataset is randomly sampled 50 times, each resulting in
a different training partition D and, hence, a different M. Such
M is, in turn, assessed on different data (i.e., different inference
partitions), yielding different C?A and 5 ?A , and is also subject to the
12 evasion attacks (all using different malicious samples as basis).

Such a large9 evaluation allows one to perform statistically vali-
dated comparisons by leveraging well-known techniques [16]. We
will do this to infer whether some attacks induce a performance
degradation that is statistically significant. To the best of our knowl-
edge, we are the first to use statistical tests to validate the impact
of adversarial attacks against ML-PWD.

6 RESULTS AND DISCUSSION
We present the results of our evaluation by focusing on our evasion
attacks. Specifically, our results aim at answering two questions:

• (§6.1) how dangerous are the most likely attacks (i.e., WA)?
• (§6.2) what is the effectiveness of attacks carried out in dif-

ferent evasion spaces (i.e., ŴA, PA, MA)?
We discuss our evaluation and potential for future work in §6.3.
Our Artifact includes the full ‘benchmark’ results.

Preliminary assessment. Our results in the absence of adver-
sarial attacks, reported in Table 3, show that the best ML-PWD on
both datasets use '� . We appreciate that the ‘true’ baseline ML-
PWD (using �2 ) exhibit similar results as the state-of-the-art (cf.
8Of course, the attacker expects the target ML-PWD to be using �2 .
9Overall, for our experiments we develop 900 M (given by: 2 source datasets * 50
random draws * 3 � * 3 A), each assessed against 1200 adversarial examples.
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(a) Impact of WA on the ML-PWD trained on Zenodo.
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(b) Impact of WA on the ML-PWD trained on XPhish.

Fig. 4: Effectiveness of the most likely attacks (WA). The three plots in each subfigure represent the algorithm used by a specific ML-PWD. Each
plot has bars divided in three groups, each denoting a specific � used by the ML-PWD.The green bars show the C?A on the original samples,
while the others show the C?A against a specific variant of WA.

Table 2). In contrast, the ‘robust’ baselines (using either �A or �D )
are slightly inferior10. For instance, on Zenodo, the '� using �D has
almost the same performance as �2 , but the one using �A has 5% less
C?A and 2% more 5 ?A ; whereas on Xphish, the '� using �D has 50%
less C?A (but similar 5 ?A ), while the one using �A has 0.5% more 5 ?A ,
but only 3% less C?A . Such degradation is the cost of using defenses
based on feature removal on the considered ML-PWD. The expected
benefit, however, is a superior resilience to evasion attempts.

6.1 Effectiveness of the most likely attacks (WA)
Let us focus the attention on the most likely attacks. We report in
Figs. 4 the C?A achieved by all our ML-PWD against all our WA
attacks (red bars), and compare it with the C?A (no-atk, shown in
green bars) achieved by the same ML-PWD on the original set of
samples used as basis for WA. Some intriguing phenomena occur.

True Baseline (�2 ). We first consider ML-PWD using �2 (left-
most group of bars in each plot), as they are the ‘true’ baseline.

• On Xphish (Fig. 4b), all ML-PWDare affected by the ‘strongest’
cheap attack, i.e., WA2 . Specifically, the ML-PWD using !' is
completely defeated (from 0.86 C?A down to 0.36); in contrast,
those using �# or '� suffer a smaller, but still significant
drop (from nearly 0.95 down to ∼0.8). Notably, the �# de-
spite being worse than the '� in non-adversarial settings (cf.
Table 3), appears to be slightly more robust.

• The situation is different on Zenodo (Fig. 4a). Here, while the
!' is still defeated, the �# and '� appear not to be very
affected by WA2 . However, considering that both�# and '�

exhibit very high performance in non-adversarial settings
(cf. Table 3), it is crucial to determine whether WA2 poses a
real threat to such ML-PWD. To this purpose, we carry out
a Welch t-test, which we can do thanks to our large amount
of trials. We set our null hypothesis as “WA2 and no-atk are
equal”. The findings are valuable: against '� , the ?-value is
0.221; whereas against �# , the ?-value is 0.002. By using
the common statistical significance threshold of 0.05, we can
hence provide the following answer: the '� is not affected
by WA2 , whereas the �# is affected by WA2 .

The latter finding is intriguing, because it suggests that shallow
learning methods can be more resilient than deep learning ones for

10Focusing on the ML-PWD using �A (which are similar to the real ML-PWD in
MLSEC [5]), we appreciate that '� achieves a remarkable 0.935 C?A and 0.01 5 ?A

(averaged on both datasets), making such ML-PWD a valid baseline.

PWD—against our proposed attacks. Finally, we also observe that
WAA clearly defeat !' on both datasets, whereas the impact on '�

and �# is significant on XPhish, but small on Zenodo.
Robust Baselines (�D , �A ). The robust baselines are, in general,

reliable against WA. The ML-PWD using �D counter WAA (and
viceversa), because the C?A is exactly the same as the original one.
Notably, however, ML-PWD using �A (similar to the ML-PWD of11
MLSEC [5]) are affected by WAA : the !' is clearly defeated on
both datasets, whereas '� suffers a 10% and 3% drop on Xphish
and Zenodo, respectively. Nevertheless, we observe a fascinating
phenomenon: in some cases, the C?A under attack is higher than in
no-atk; e.g., on Xphish the '� analyzing �D has its C?A to increase
from 0.56 to ∼0.84 against both WAD and WA2 . Such phenomenon
occurs because the attacker (in any variant of WA) does not know
‘what to do’ to reliably evade the ML-PWD: the attacker guesses
some WsP, which can have no impact, or even make the website
closer to a ‘malicious’ one (from the viewpoint of M).

Takeaway: The realistic attacks in the website-space (WA2 ) can
evade five (out of six) ML-PWD. Despite being small, the perfor-
mance degradation is statistically significant: hence, due to their
cheap cost, WA2 represent a threat to state-of-the-art ML-PWD.

6.2 Comparing the evasion-space (ŴA, PA, MA)
We now focus on comparing the effectiveness of attacks that aim
at influencing the same features (i.e., either D, A , 2), but whose
perturbations are introduced in different spaces (i.e., either WsP,
PsP, or MsP). We visualize such results in Fig. 5.

The ‘true’ baselines (using �2 , i.e., the leftmost plots in Fig. 5)
are defeated by MA. However, there are some notable exceptions:
on Zenodo, the '� and �# are resilient to MAA (this is because
the HTML features have little importance for �2 ). In contrast, on
Xphish, '� can withstand MAD . The ‘robust’ baselines counter the
corresponding MA, but unsurprisingly suffer against the others.

In general, PA tend to have a larger impact than ŴA against the
‘true’ baselines. However, this is not always true: we find enlighten-
ing that the �# on Zenodo is more robust to PA than to ŴA. What
is even more surprising is that such �# significantly outperforms
the '� against PA, but also against MA. Such finding could inspire
11We also successfully attacked the competition-grade ML-PWD of [5] with WAA ,
achieving similar results than the one shown in our custom-built ML-PWD. A demon-
strative video (of 140s) can be found at the homepage of our website.
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(a) Zenodo. Each plot reports the C?A resulting from the 9 advanced attacks (i.e.,
ŴA, PA, MA) across the 50 trials. Colors denote the targeted features (D, A , 2).
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(b) Xphish. Each plot reports the C?A resulting from the 9 advanced attacks (i.e.,
ŴA, PA, MA) across the 50 trials. Colors denote the targeted features (D, A , 2).

Fig. 5: Comparison of attacks carried out in different evasion-spaces. Each subfigure refers to a specific dataset, and presents 9 plots. Such plots
are organized in three rows and three columns. Rows denote a specific ML algorithm (!', '� , �# ). Columns denote a specific feature set: the
‘true’ baseline (using �2 ) is on the left; the others are the ‘robust’ baselines (using �D or �A ).

deployment of ML-PWD using deep learning on Zenodo—despite
being inferior to '� in the no-atk (Table 3) and against WA2 (§6.1).

We note that �WAD perfectly match WAD , which makes sense
as they involve exactly the same WsP (cf. Appendix D). We can
also see some discrepancies between ŴA and PA: as a matter of
fact, our anticipation of the preprocessing-space (i.e., the PsP of PA)
did not exactly match what truly happened in the website-space .
However, in some cases (e.g., the '� using �2 and �A on Xphish) we
observe that the effectiveness of ŴA and PA tend to be similar. Such
crucial finding demonstrates that perturbations applied directly to
�G (which we use for PA) can induce the same effects as those
applied to G (which we use for ŴA). In other words: if properly
crafted, then even perturbations in the “feature-space” can resemble
adversarial examples that are physically realizable [86].

Let us compare our attacks with those considered by Xphish
creators. Specifically, the attacks in [30] manipulate increasingly
higher amounts of features (up to 10), and all ultimately evade target
ML-PWD (which analyzes the HTML). Such finding is confirmed
by our results on the ML-PWD analyzing �A on Xphish against
MAA , which all misclassify the adversarial samples. However, if the
perturbations are applied in different spaces (i.e., PsP or WsP), then
the ML-PWD is significantly less affected.

6.3 Discussion and Future Work
Our evaluation is a proof-of-concept, and we do not claim that all
ML-PWD will respond in the same way as ours, and neither we
claim novelty in the ‘generic’ method used to to evade PWD (attack-
ers have been manipulating the HTML or URL for decades [21]).

Indeed, our goal was to validate our primary contribution (whose
focus is on machine learning) by performing a fair comparison of
attacks (each having a different cost) in diverse evasion-spaces.

Warning on WA. A legitimate observation is that our cheap
attacks, despite affecting most ML-PWD, have a small impact—even
if statistically significant (§6.1). Such results, however, must not
induce conclusions such as “these attacks are not interesting” or
(worse) “these attacks can be overlooked in the security lifecycle”.
Indeed, the main threat of WA is represented by the cheap cost : thou-
sands of phishing websites are created every day [7], and in such
big numbers even a 1% difference can be the separation between a
compromised and secure system [15]. Our goal is not to propose
devastating attacks that bypass any ML-PWD; rather, we focus on
those attacks that are more likely to occur in reality. As a matter
of fact, WAs can be automatized and implemented within seconds
and few lines of code; in contrast, the advanced attacks (including
those of past work, e.g., [30, 57]) require to compromise or reverse-
engineer the ML-PWD (§3.1). The cost of an attack should also
account for the effort required for its implementation. Most related
literature focuses on measuring ‘queries’ (e.g., [33]): our WA do not
require any query. Nonetheless, we invite future work to explore
metrics to estimate the cost of attacks in terms of human effort.

Extensions. The main purpose of our evaluation is to highlight
how state-of-the-art ML-PWD respond to diverse evasion attacks.
There are, however, millions of ways to do the above. For instance,
the attacks can target different features (and in different ways) than
the ones considered in our evaluation (i.e., D, A , 2); the ML-PWD
can analyze different features, which can be generated via different
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preprocessing mechanisms (e.g., [52]). Additional defenses can also
be considered (e.g., adversarial training [68, 88]). For instance, we
did not consider ML-PWD that analyze the visual representation
of a webpage (e.g., [8, 59]): such attacks would resemble those
conducted in computer vision, which are well-known to be effective
(e.g., [71, 87]). Nevertheless, our threat model is agnostic of the
data-type, so we endorse future work to also consider ML-PWD
analyzing images. Finally, our evasion-space formalization can be
applied even to settings beyond phishing (e.g., malware), which
may entail attackers more likely to use PsP or MsP.

7 RELATEDWORK
Countering phishing is a long-standing security problem, which
can be considered as a subfield of cyberthreat detection—a research
area that is being increasingly investigated also by adversarial
ML literature [14]. We focus on the detection of phishing websites.
Papers that consider phishing in social networks [22], darkweb [95],
phone calls [39], or emails [34] are complementary to our work—
although our findings can also apply to phishing email filters if they
analyze the URLs included in the body text (e.g., [38]). Our focus
is on attacks against ML-PWD. For instance, Tian et al. [85] evade
PWD that use common blacklists, and their main proposal is to
use ML as a detection engine to counter such “squatting” phishing
websites. Hence, non-ML-PWD (e.g., [96]) are outside our scope.

Let us compare our paper with existing works on evasion attacks
against ML-PWD. We provide an overview in Table 4, highlighting
themain differences of our paper with the state-of-the-art. Only half
of related papers craft their attacks in the problem-space—which
requires modifying the raw webpage. Unfortunately, most publicly
available datasets do not allow similar procedures. A viable alterna-
tive is composing ad-hoc dataset through public feeds as done, e.g.,
by [36] and [77] (the latter only for URL-based ML-PWD). All these
papers, however, do not release the actual dataset, preventing re-
producibility and hence introducing experimental bias. The authors
of [81] share their dataset, but while the malicious websites are
provided with complete information (i.e., URL and HTML), the be-
nign websites are provided only with their URL—hence preventing
complete reproducibility of attacks in the problem-space against
ML-PWD inspecting the HTML. The latter is a well-known issue in
related literature [69], which does not affect our paper because our
entire evaluation is reproducible. Notably, Aleroud et al. [11] evalu-
ate attacks both in the problem and feature-space, but on different
datasets, preventing a fair comparison. Indeed, they evade one ML-
PWD trained on PhishStorm (which only includes raw URLs) with
attacks in the problem space; and another ML-PWD trained on UCI
(which is provided as pre-computed features) through feature space
attacks. Hence, it is not possible to compare these two settings.
A similar issue affects also [10], which consider 4 datasets, each
having a different � . Therefore, no prior work compared the impact
of attacks carried out in distinct evasion-spaces—to the best of our
knowledge. Not many papers consider adversarially robust ML-
PWD, and only half consider both SL and DL algorithms—which
our evaluation shows to respond differently against adversarial
examples (cf. §6.2). It is concerning that few papers overlook the
importance of statistically significant comparisons. The most re-
markable effort is [79] which only performs 10 trials (we do 50),
which are not enough to compute precise statistical tests.

Nevertheless, most prior work assume stronger attackers than
those envisioned in our threat model (cf. §4). Indeed, past threat
models portray black-box attackers who can freely inspect the
output-space and query the ML-PWD (e.g., [10, 57, 77]); or white-
box attackers who perfectly know the target ML model M, such
as its configuration, its training data D, or the feature importance
(e.g., [8, 36, 59]). The only papers considering attackers that are
closer to our threat model are [55, 67] and [8]. However, the ML-
PWD considered in [8] is specific for images, which are tough to
implement (cf. §6.3) and also implicitly resembles a ML system
for computer vision—a task well-investigated in adversarial ML
literature [21]. In contrast, the ML-PWD considered in [55] and [67]
is similar to ours, but the adversarial samples are randomly created
in the feature space, hence requiring an attacker with write-access
to the internal ML-PWD workflow. Such an assumption is not
unrealistic, but very unlikely in the context of phishing (cf. §4.2).

8 CONCLUSIONS
This paper aims to provide a constructive step towards developing
ML systems that are secure against adversarial attacks.

Specifically, we focus on the detection of phishing websites,
which represent a widespread menace to information systems. Such
context entails attackers that actively try to evade ‘static’ detection
mechanisms via crafty, but ultimately simple tactics. Machine learn-
ing is a reliable tool to catch such phishers, but ML is also prone
to evasion. However, realizing the evasion attempts considered by
most past work requires a huge resource investment—which con-
tradicts the very nature of phishing. To provide valuable research
for ML security, the emphasis should be on attacks that are more
likely to occur in the wild. We set this goal as our primary objective.

After dissecting the architecture of ML-PWD, we propose an
original interpretation of attacks against ML systems by formalizing
the evasion-space of adversarial perturbations. We then carry out
a large evaluation of evasion attacks exploiting diverse ‘spaces’,
focusing on those requiring less resources to be staged in reality.

Takeaway: The findings of our paper are useful to both
research and practice in the domain of adversarial ML.

• Our evasion-space formalization allows researchers
to evaluate adversarial ML attacks without the risk
of falling into the “unrealizable” perturbation trap
(as long as the corresponding cost is factored in).

• Our results raise an alarm for practitioners: some
ML-PWD can be evaded with simple tactics that do
not rely on gradient computations, days of bruteforc-
ing, or extensive intelligence gathering campaigns.
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A SUPPLEMENTARY TABLES AND FIGURES
We report in Table 1 the complete list of features of the ML-PWD
considered in our paper. Table 2 shows some essential information
on our datasets; Table 3 reports the baseline performance of our
ML-PWD (developed through the workflow shown in Fig. 6); and
Table 4 shows the related works discussed in §7.

Table 1: Features � of the considered ML-PWD.

# Feature Name # Feature Name # Feature Name

1 URL_length 20 URL_shrtWordPath 39 HTML_commPage
2 URL_hasIPaddr 21 URL_lngWordURL 40 HTML_commPageFoot
3 URL_redirect 22 URL_DNS 41 HTML_SFH
4 URL_short 23 URL_domAge 42 HTML_popUp
5 URL_subdomains 24 URL_abnormal 43 HTML_rightClick
6 URL_atSymbol 25 URL_ports 44 HTML_domCopyright
7 URL_fakeHTTPS 26 URL_SSL 45 HTML_nullLnkWeb
8 URL_dash 27 URL_statisticRe 46 HTML_nullLnkFooter
9 URL_dataURI 28 URL_pageRank 47 HTML_brokenLnk
10 URL_commonTerms 29 URL_regLen 48 HTML_loginForm
11 URL_numerical 30 URL_checkGI 49 HTML_hiddenDiv
12 URL_pathExtend 31 URL_avgWordPath 50 HTML_hiddenButton
13 URL_punyCode 32 URL_avgWordHost 51 HTML_hiddenInput
14 URL_sensitiveWrd 33 URL_avgWordURL 52 HTML_URLBrand
15 URL_TLDinPath 34 URL_lngWordPath 53 HTML_iframe
16 URL_TLDinSub 35 URL_lngWordHost 54 HTML_favicon
17 URL_totalWords 36 HTML_freqDom 55 HTML_statBar
18 URL_shrtWordURL 37 HTML_objectRatio 56 HTML_css
19 URL_shrtWordHost 38 HTML_metaScripts 57 HTML_anchors

All features in Table 1 are used by both the ML-PWD targeted
in our pragmatic use-case (cf. §B), as well as by the ‘true baselines’
ML-PWD (i.e., those analyzing �2 ) used in our evaluation (cf. §5.1.3);
in contrast, the ‘robust’ ML-PWD (i.e., those analyzing either �D or
�A ) consider subsets of the features in Table 1 (see §5.1.3).

We mention that the original Zenodo contains 100k phishing, and
almost 4M benign webpages. To make our evaluation “humanly
feasible,” we randomly sample 4000 webpages from Zenodo, equally
split between benign and phishing. In such a way, we can analyze
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Table 2: Statistics and state-of-the-art of our datasets.

Dataset #Benign #Phish fpr tpr

Xphish [30] 5511 1012 0.01 0.98
Zenodo [89] 2000 2000 0.08 0.99

the response of ML-PWD having diverse balancing: while Zenodo is
perfectly balanced, XPhish has significantly more benign samples.

Table 3: Performance in non-adversarial settings, reported as the
average (and std. dev.) C?A and 5 ?A over the 50 trials.

A �
Zenodo Xphish

C?A 5 ?A C?A 5 ?A

�#

�D 0.96±0.008 0.021±0.0077 0.55±0.030 0.037±0.0076

�A 0.88±0.018 0.155±0.0165 0.81±0.019 0.008±0.0020

�2 0.97±0.006 0.018±0.0088 0.93±0.013 0.005±0.0025

'�

�D 0.98±0.004 0.007±0.0055 0.45±0.022 0.003±0.0014

�A 0.93±0.013 0.025±0.0118 0.94±0.016 0.006±0.0025

�2 0.98±0.006 0.007±0.0046 0.97±0.007 0.001±0.0011

!'

�D 0.95±0.009 0.037±0.0100 0.24±0.017 0.011±0.0026

�A 0.82±0.017 0.144±0.0171 0.74±0.025 0.018±0.0036

�2 0.96±0.007 0.025±0.0077 0.81±0.020 0.013±0.0037

By comparing Table 3 with Table 2, we appreciate that our ML-
PWDusing �2 achieve comparable performance as prior work (even
after our subsampling on Zenodo), confirming their relevance as
baseline. Our repository includes the 4K pages we used for Zenodo.

Table 4: Adversarial attacks against ML-PWD. For each paper, we
report: the evasion space (for simplicity we consider problem and
feature-space); which features (� ) are analyzed by the ML-PWD; the
ML algorithms used by the ML-PWD (SL or DL); if some defense is
evaluated; howmany datasets are used (and if they are reproducible);
and if the experiments are repeated for statistical validation.

Paper
(1st Author) Year Evasion

space
ML-PWD
types (� )

ML
Algorithms Defense Datasets

(reprod.)
Stat.
Val.

Liang [57] 2016 Problem �2 SL 7 1 (7) 7

Corona [30] 2017 Feature �A , �2 SL 3 1 (3) 7

Bahnsen [20] 2018 Problem �D DL 7 1 (7) 7

Shirazi [79] 2019 Feature �2 SL 7 4 (3) 3*
Sabir [77] 2020 Problem �D SL, DL 3 1 (7) 7

Lee [55] 2020 Feature �2 SL 3 1 (3) 7

Abdelnabi [8] 2020 Problem �A DL 3 1 (3) 7

Aleroud [11] 2020 Both �D SL 7 2 (3) 7

Song [81] 2021 Problem �2 SL 3 1 (3*) 7

Bac [18] 2021 Feature �D SL, DL 7 1 (7) 7

Lin [59] 2021 Feature �2 DL 3 1 (3) 7

O’Mara [67] 2021 Feature �A SL 7 1 (3) 7

Al-Qurashi [10] 2021 Feature �D , �2 SL, DL 7 4 (3) 7

Gressel [36] 2021 Feature �2 SL, DL 3 1 (7) 7

Ours Both �D , �A , �2 DL, SL 3 2 (3) 3

B PRAGMATIC USE-CASE
Let us showcase how an attacker can physically realize WsP leading
to adversarial samples. We intend to demonstrate that WsP “can be
done”, and hence represent a (likely) threat that must be considered
in a proactive development lifecycle of ML-PWD.

Target System. We consider the ML-PWD proposed in [45],
whose architecture aligns with the one in Fig. 3. The corresponding
M is a '� classifier trained on a dataset created ad-hoc through
public feeds. The complete feature set � analyzed by M is reported

Source
Dataset 

(raw)

A train

M
Benign 
B

Phishing 
P
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tpr fpr
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u F 

r F 
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Fig. 6: Experimental workflow. Each source dataset (containing be-
nign, �, and phishing, % , samples) is randomly split into the training
(�C and %C ) and inference (�8 and %8 ) partitions, used to train and test
each ML-PWD. We use %8 as basis for our adversarial samples.

in Table 1, which includes features related to both the URL and the
representation of the website (based on the HTML). The ML-PWD
extracts such features by inspecting the raw webpage according to
the thresholds proposed in [60] (and also used in [45]). We observe
that such methodology (and, hence, � ) is also adopted by very
recent works (e.g., [40, 78]). We provide more details in the Artifact.

Attacker. The attacker expects the usage of a ML-PWD, but
they are agnostic of anything about the ML model M, i.e., they are
oblivious of the ML algorithm (i.e., '� ) and its training data. The
attacker, however, follows the state-of-the-art and hence knows
the most popular feature sets used by ML-PWD (e.g., [78]). In par-
ticular, the attacker correctly guesses that the ML-PWD analyzes
features related to both the URL and the representation of the web-
page, and specifically the URL length and the objects embedded
in the HTML. Formally:  =(URL_length, HTML_objectRatio). The
attacker, however, does not know the exact functionality of the
feature extractor, the complete feature set � , and which features
are more important for the final classification (the latter requires
knowledge of M). To provide a concrete example, we assume that
the attacker owns the phishing12 webpage shown in Fig. 7, whose
URL is “https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/”.

Fig. 7: An exemplary (and true) Phishing website, whose URL is
https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/.

Real Perturbations. To craft perturbations in the website-space
(i.e., WsP) that affect  ⊂ � , the attacker can do the following.
12PhishTank reports such webpage to be a true and verified phishing (March 2022).
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(1)Modify the HTML.The attacker knows that phishing websites
have many links that point to external domains13 with respect to
internal resources (which would require to invest more into web-
hosting). Hence, the attacker can introduce (in the HTML) a high
number of ‘fake links’ that point to non-existent internal resources,
which will affect the ratio of internal-to-external objects (making
it more even). Such fake links, however, are can be made invisible
(by exploiting some CSS properties) to users, who will not notice
any difference14. We provide a visual representation of such WsP
in Fig. 8, showing a snippet of the HTML of the original phishing
webpage (cf. Fig. 7); the red rectangles denote two exemplary ‘per-
turbations’, i.e., the introduction of (hidden) links pointing to an
internal resource (which may not exist). Note that such WsP does
not break the website’s functionality, and can be cheaply introduced
anywhere (and many times) in the source HTML. Similar WsP are
feasible and will15 influence the HTML_objectRatio (included in  ).

(2) Modify the URL. The attacker knows that long URLs are sus-
picious. So the attacker can, e.g., use a URL-shortening service (e.g.,
bit.ly) to alter the length of the phishing URL. In our case, the origi-
nal URL (of 52 characters) can be shrunk to “https://bit.ly/3MZHjt7”
(of 14 characters), thereby resulting in a completely different URL.
Such a WsP will affect many features analyzed by M (cf. Table 1).
Such features are not included in  , and hence their modifications
are beyond the attacker’s knowledge. The shrunk URL can then be
distributed by the attacker in the wild16.

(3) Both of the above. The attacker can easily perturb both the
URL and HTML to induce perturbations of higher impact.

Observation. None of these WsP are guaranteed to evade the
ML-PWD. Indeed, a short URL is not necessarily benign, and having
a non-suspicious ratio of internal-to-external objects is also not a
strict requirement for being a benign webpage. The WsP could even
be useless in the first place, e.g., the original URL could be already
‘short’. Indeed, our attacker is not aware of what happens inside the
ML-PWD. The problem, however, is that such uncertainty is shared
by both the attacker (who cannot observe the ML-PWD) and the
defender (who cannot exactly pinpoint what the attacker does). To
reveal the uncanny effects of such WsP, we assess them in §6

C THREAT MODEL: CONSIDERATIONS
Let us enhance our threat model with four considerations.

(1) The attacker can easily acquire a rough idea of the feature
set � analyzed by the ML-PWD. For instance, the descriptions of
many state-of-the-art solutions are openly accessible. However, it is
unlikely that the attacker knows the exact feature set � : the actual
implementation of a ML-PWD (including the feature extractor) can
– or, rather, should! – differ from the publicly available information.
This is why we consider an attacker that only knows  ⊆ � .

(2) We note that it is also possible that  = ∅. In this case,
the attacker expects the ML-PWD to analyze some features that

13E.g., phishing associated with AT&T will have many links pointing to the real AT&T.
14N.b.: complete ‘invisibility’ is not a strict requirement. Some WsP can be ‘spotted’ by
a detailed analysis, but users may not notice them while still being phished. E.g., a link
can be deleted; or a WsP can wrap: <a href=’link’> into <a onclick=”this.href=’link’”>.
15In theory, similar WsP could be detected by analyzing whether a given link is valid or
not. Doing so, however, would pose an extremely high overhead: it requires checking
every single link for every webpage that is analyzed by the ML-PWD.
16The ML-PWD will be fooled if it is stateless and does not visit all the redirections of
the shortening service. Nevertheless, there are many ways to reduce the URL_length.

Fig. 8: A perturbation Y in the website-space (WsP). The original
HTML (related to the website in Fig. 7) is modified by introducing
hidden link(s). Such WsP will not be noticed by a user.

are not actually analyzed by M (for instance, the attacker can
modify the URL, but nothing about the URL is analyzed by M). This
can happen, e.g., against an ‘adversarially robust’ ML-PWD that
leverages the well-known feature removal strategy (cf. §2.3). As a
result, WsP targeting such  will likely result in a negligible impact.
Furthermore, it is also possible that some features in  simply
cannot be influenced by an attacker operating in the website-space
(e.g., features that depend on third-party sources, such as DNS logs).

(3) Since our attacker cannot access the ML-PWD, they cannot
observe the output-space and, thus, cannot optimize their perturba-
tions to find the best WsP that guarantees evasion; and cannot even
verify whether their WsP evade the ML-PWD or not. The attacker
is, however, not subject to strict boundaries on WsP (§3.2).

(4)Our threat model considers attacks at inference-time (i.e., after
M has been deployed in the PWD). This is because the dataset used
to devise ML-based security systems is typically well-protected [12].
Compromising such dataset would significantly raise the cost of the
offensive campaign (as also highlighted in [58]). Therefore, phishers
are unlikely to launch attacks at training-time.

The last two are significant: lack of access (and, hence, knowl-
edge) on the training set prevents from achieving the no-box attacks
of [56]; furthermore, the impossibility of witnessing the output of
M prevents enacting typical black-box strategies (e.g., [62]).

D EXPERIMENTS: CONSIDERED ATTACKS
In our paper, we consider a total of 12 evasion attacks, divided
in four families. One of these families is an exact replica of our
‘standard’ threat model. The remaining three families, however,
are extensions of our threat model, which assume more ‘advanced’
adversaries who have superior knowledge and/or capabilities.

Two of our families involve WsP (WA and ŴA), but assume
attackers with different knowledge; whereas the remaining two
families involve either PsP or MsP (PA and MA). Each family has
three variants depending on the features ‘targeted’ by the attacker,
i.e., either those related to the URL, the HTML, or a combination
of both (D, A , or 2). For WsP, the underlying ‘attacked’ features
are always the same for all variants, which are assumed to be
known by the attacker: D is always the URL_length; for A is the
HTML_objectRatio; and for 2 they are both of these. (Do note that
our WsP will affect also features beyond the attacker’s knowledge.)
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• Cheap Website Attacks (WA) perfectly align with our threat
model (ans resemble the use-cases in Appendix B). The per-
turbations are created in the website-space (WsP), realizing
either WAD , WAA , or WA2 . Specifically for A (and 2), we con-
sider two semantically equivalent WsP: “add fake link” for
XPhish, and “link wrapping” for Zenodo. Such WsP attempt
to balance the object ratio: the former by adding (invisible)
links to (fake) internal objects, whereas the latter by eluding
the preprocessing mechanism—thereby having a link not
being counted among the total links shown in a webpage.

• Advanced Website Attacks (ŴA), which envision a more
knowledgeable attacker than WA. The attacker knows how
the feature extractor within the ML-PWD operates (i.e., they
know the specific thresholds used to compute some features).
The attacker – who is still confined in the website-space –
will hence craft more sophisticated WsP because they know
how to generate an adversarial sample that is more likely to
influence the ML-PWD. Thus, the attacker will modify either
the URL, the HTML, or both (i.e., �WAD , �WAA , �WA2 ), but in
more elaborate ways—e.g., by ensuring that the HTML_objec-
tRatio exactly resembles the one of a ‘benign’ sample; or by
making an URL to be ‘long enough’ to be considered short.

• Preprocessing Attacks (PA), which are an extension of our
threat model, and assume an even stronger attacker that
is able to access the preprocessing stage of the ML-PWD,
and hence introduce PsP. Such an attacker is capable of
direct feature manipulation—subject to integrity checks (i.e.,
the result must reflect a “physically realizable” webpage).
Since the attacker does not know anything about the actual
M, the attacker must still guess their PsP. Such PsP will
target features based on either D, A , 2 (i.e., PAD , PAA , PA2 ) by
accounting for inter-dependencies between other features.

• ML-space attacks (MA), representing a worst-case scenario.
The attacker can access the ML-space of the ML-PWD, and
can hence freely manipulate the entire feature representation
of their webpage through MsP. However, the attacker is
still oblivious of M, and must hence still guess their WsP.
Thus, the MsP applied by the attacker completely ‘flip’ many
features related to D, A , 2 (i.e., MAD , MAA , MA2 ).

Motivation.We consider these 12 attacks for three reasons. First,
to assess the effects of diverse evasion attacks at increasing ‘cost’. For
instance, the simplicity of WA makes them the most likely to occur;
whereas MA can be disruptive, but are very expensive (from the
attacker’s viewpoint). Second, to study the response of ML-PWD
to WsP targeting the same features (WAA ), but in different ways
(one per dataset), leading to alterations of different features beyond
the attacker’s knowledge. Third. to highlight the effects of potential
‘pitfalls’ of related researches. Indeed, we observe that all three
remaining families (ŴA, PA, MA) envision attackers with similar
knowledge which they use to target similar features. Such pecu-
liarity allows comparing attacks carried out in different ‘spaces.’ A
particular focus is on PA, for which we apply PsP by anticipating
how a WsP can yield a physically realizable [86] PsP. Put differ-
ently, our evaluation shows what happens if the perturbations are
applied without taking into account all preprocessing operations
that transform a given G into the �G analyzed by M.

Implementation. We follow three steps: isolate, perturb, evade.
We refer to the Artifact and source-code for the low-level details.

(1) Isolate. Our threat model envisions evasion attacks that occur
during inference, hence our adversarial samples are gener-
ated from those in %8 . Furthermore, we recall that the attacker
expects the ML-PWD to be effective against ‘regular’ mali-
cious samples (cf. §4.1). To meet such condition, we isolate
100 samples from %8 that are detected successfully by the
best ML-PWD (typically using �2 ). Such samples are then
used as basis to craft all the adversarial samples (through
WsP, PsP or MsP) of our evaluation—thereby ensuring that
all detectors are assessed against the exact same adversarial
samples (which is necessary for a fair comparison).

(2) Perturb. We apply the perturbations as follows. For WA and
ŴA, we craft the corresponding WsP, apply them to each of
the 100 samples from %8 , and then preprocess such samples
by using the feature extractor. For PA and MA, we first
preprocess the 100 samples with the feature extractor, and
then apply the corresponding PsP or MsP. Overall, these
operations result in 1200 adversarial samples (12*100).

(3) Evade. The 1200 adversarial samples are then sent to all the 9
ML-PWD (for each dataset), and we measure the C?A again.

We expect the C?A on the adversarial samples (generated by any of
our 12 considered attacks) to be lower than the C?A on the originals.

Effectiveness and Affordability. In terms of effectiveness, as-
suming the same targeted features, WA<ŴA<PA�MA (§6.2). This
is justified by the higher investment required by the attacker, who
must either perform extensive intelligence gathering campaigns (to
understand the exact feature extractor for ŴA) or gain write-access
to the ML-PWD (for PA and MA). Let us provide a high-level sum-
mary of the requirements to implement all our attacks—all of which
are query-less and rely on blind perturbations.

• WA: they require as little as a dozen lines of elementary code,
and a very rough understanding of how ML-PWD operate
(which can be done, e.g., by reading research papers).

• ŴA: they also require a few lines of code to implement. How-
ever, determining the exact thresholds requires a detailed
intelligence gathering campaign (or many queries to reverse-
engineer the ML-PWD, if it is client-side).

• PA: they require a compromise of theML-PWD. For example,
introducing a special ‘backdoor’ rule that “if a given URL is
visited, then do not compute its length and return that the
URL is short”. Doing this is costly, but it is not unfeasible if
the feature extractor is open-source (e.g., [19]).

• MA: they also require a compromise of the ML-PWD. In this
case, the ‘backdoor’ is introduced after all features have been
computed—and irrespective of their relationships. Hence.
the cost is very high: the ML model is likely to be tailored
for a specific environment, thereby increasing the difficulty
of successfully introducing such backdoors in one of the
deepest segments of the ML-PWD.

Hence, in terms of affordability: WA�ŴA�PA>MA (i.e., the re-
lationship is the reverse of the effectiveness). For this reason, in
our evaluation we will put a greater emphasis on WA, because
‘cheaper’ attacks are more likely to occur in the wild : while WA can
be associated with “horizontal phishing” (the majority), the others
are tailored for “spear phishing” (the minority).
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